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AIHr~,t~The basic regularities of the thermal ~gular ~ theory developed by O. M. Co~trat.~v 
and its practical application to the thermotechnical m~tsuren~nts are disc~ in this paper. 

Under the thermal regular regime of a body or a system of bodies one unde~tood such a process of" 
cooling or  heating the system when: (1) the initial temperature distribution in the system does not 
influence the law of temperature change; (2) the law of temperature change is expressed in a simple 
mathematical form; (3) this law is general for all the points of the system. 

These regularities of  the thermal regular reigime permitted: (a) to work out a number of methods to 
determine the thermal chanmtzfistics of  diffmeat materials; (b) to determine the thermal inertia of  
thefmometen and pyrometers; (c) to obtain the relations to calculate the kinetics of cooling or heating 

the complicated tlun~otechnical apparatus and equipment. 

R ~ & - - L e s  conditions de r6gularit~ qui sont / t  la base de la th~r i e  du r/:sime thermique r~luiier 
d6veloppte par G. M. Condratjev et son application aux mesures thermiques de la technique sont 
pr~- ' i s~ dam cet article. 

Par r6gime thermique t~,gulier d'tm corps ou d'un ensemble de corps, on d~igne tm processus dc 
refroidisser~nt ou de chauffage du syst~xue tel qne: 1 ° la distribution des temp~xaULres initiales dens le 
sysUhne n'influenee pas la loi d'~yolution des temp,h'atures; 2 ° Is loi d'6volution des temperatures 
s'exprime dans une forme math,h~atique simple; 3 ° cette loi est g6n~rale et s'applique en tout point du 
syst~me. 

Ces conditions de r~gularit~ du r~gime thermique r~gulier ont permis: (a) d'~tablir un certain 
nombre de m6thodes pour la d6termination des caract6ristiques therndques des diff,h'ents mat~riaux, 
(b) de d~enniner rinertie thernuque de thermom~res et pyrom~tres, (c) d'obtenir les relations 
permettant de calculer la cin6tique de r e f r o i d ~ n t  ou de chauffage dans le cas d'appareillages tech- 

niques compliqu~s. 

Zu~mmeu~lmmg--In  dieser Arbeit werden die Grundzfige der Theorie des regulitren thermischen 
Zustandes, nach G. M. Condratjev, und ihre praktische Anwendung auf w~rmetechnische Messungen 
behandelt. 

Unter dem reguliLren thermischen Zustand eines KOrpers oder eines Systems yon KOrpern versteht 
man einen Ktlhlungs- oder Erwgxmungsvorgang, bei dem (1.) die anf'~ingliche Temperaturverteilung 
in dem System das Gesetz der Temperaturgnderung nicht beeinfluflt, (2.) des Gesetz der Temperatur- 
itnderung in einer einfachen mathematischen Form ausgedrOckt ist, (3.) dieses Gesetz ffir abe Punkte 
des Systems gtiltig ist. 

Diese Grundzfige des regul&ren thermischen Zustandes erlanhen (a) eine Anzahl yon Methoden zur 
Bestimmung der thermischen Eigenschaften verschiedener Materlalien anzugeben, (b) die thermische 
TrAgheit yon Thermometern trod Pyrometern zu bestimmen, (c) die Kinetik der KiLhltmg oder Heizung 

yon komplizierten w~metechnischen Apparaten zu berechnen. 

Almtraet--B CTaTbe paccMaTpHeamTen OCHOBHHe 3aI~OHOMepHOCT;I Teoprm Ten:lOBOl'O pery- 
anpHoro peh~aMa, pa3pa6oTaHH~e r .  M. ~oH~paTbeB~M, ~t e~ HpHMeHeHHe B npa~TuKe 
Ten~oTeXHHqecHKx a3MepeHHtt. 

Tenaoe~JM pery~npnt~M pemHMOM Te.~a Ha~t CttCTeM~ Te:I Ha3~BaeTCR TaKOfl npouece e~ 
HaPpeBaHHR H~H ox3aH~KeHHH IIpH HOTOpOM : (1) Ha 3aROH H3MeHeHHf~ TeMnepaTyp~ He B~IHffeT 
Haqa~bHOe pacnpe~e:~eHHe Te~nepaTyp~ B eHeTeMe, (2) .~at{oH H3MeHeHHH Te~nepaTyp~ 
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nmeeT npocToe MaTeMaTnqec~oe BT=rpa~eHHe, (3) aTOT 3aKOH fIBJIfleTCH O6111HM RJlfl Bcex TOqeR 
cacrexM. 

~'ra saRoHoMepHocTH TeRJIOBOPO perya~paoro pemsMa noaBo~H~.H: (a) paapa6oTaTb 
paa uero~oa onpe~eaeana Tenaoasrx xapatrrepacTaK paa:mqasrx MaTepKaaoe, (6) onpeaeaxTJ. 
wenaoay~o aaepnmo TepMoMerpoa a nKpoue, rpoa, (~) noayqxTS pacq~Tnue coo~aomeaaa 
~aa,  acc~e~loaaHnR HHHeTHHH oxaa~aea~a aaa Harpeaal laH C210W, HHX TelI2IOTeXHHqeoKHx 

annaparoB ;~ ycTpogcTB. 

CONDRATJEV h a s  developed experimental 
methods serving to determine the thermophysieal 
charactersitics of  non-metallic materials. These 
methods are based on the general regularities of 
the unstationary temperature field of a body or 
system of bodies in cooling or heating processes. 

It is known that the general solution of the 
Fourier equation for the problem of cooling of 
a uniform and isotropic body of any configura- 
tion is expressed by an infinite series, the terms 
of which have been distributed along the rapidly 
decreasing exponential functions of  time 

t -- tc = ~, AiU~ exp ( - -m: )  (1) 
I ~ 0  

so that the positive numbers m e, m~ . . . .  are the 
series of continuously increasing discrete num- 
bers 

0 < m  e < m l < m 2 < . . .  (2) 

Uo, U1 . . . .  are the finite functions of body 
points co-ordinates; 

A~ A1 . . . .  are also finite and constant num- 
bers independent of time and co-ordinates. 
The functions of Ui satisfy the boundary 
conditions 

- ~  ÷ hUi , = 0  (3) 

The functions of A~ are determined from the 
initial conditions 

Y, A,U, = f(x, y, z) (4) 
iffiO 

The following symbols are assumed here: 
t = t(x, y, z, ~.) is the temperature of a 
body at the point (x, y, =) at the time ~; t~ 
is the medium temperature; 8UJSn is the 
derivative of the function U~ along the external 
normal to the outside surface of the body S; 
f(x, y, z) is the function which characterizes the 
initial distribution of temperatures; h = a/A, 

where a is the heat transfer coefficient and A is the 
thermal conductivity coefficient. For the latter 
coefficients we assume that they are independent 
of temperature as it is generally used in the theory 
of heat conduction. The kinetics of cooling a 
body has three stages. The first one is qualified 
by the strong influence of the initial state of a 
body upon its temperature field. In general, the 
initial state of a body is occasional and quite 
independent of both the system characteristics 
and the conditions under which the cooling 
process is going on. In the course of time the 
influence of the initial peculiarities of the tem- 
perature field upon further change is smoothed. 
From the "irregular stage" the process becomes 
"regular" and the influence of non-uniformity 
of  the initial temperature distribution no longer 
has any effect; the law of change of the tem- 
perature field has the ordinary exponential form 

t,eq -- t¢ ----- A0U o exp (--mo~) (5) 

Condratjev gives a generalization of the 
above theorem for a system of  bodies.? 

Suppose that the thermal characteristics: 
thermal conductivity A~, thermal diffusivity a~., 
specific heat cj and also the density y~ depend 
upon the co-ordinates of the points of  the given 
part ( j )  of the system (if the material, for 
example, is non-homogeneous) but it is assumed 
here that A~, aj, c ,  7~ are independent of tem- 
perature in the temperature ranges observed in 
the system during the process. 

Under these conditions the principle about the 
conversion from an irregular state to a regular 
regime, proved by Boussinesq for any uniform 
and isotropic body, is valid for the system of 
bodies as well. 

So we see that the rate of change of In 

t By the system of bodies one may tmderstand a whole 
complex of various solids which are in close contact. 
If the components of a system are liquids then we 
suppose that a field of temperature is uniform. 
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(t -- t,) is the same for all the points of the 
system 

~--~ In (t - -  to) = - - m  (6)  

Therefore the temperature field of a body will 
be expressed by co-ordinates ~-, in (t -- to) after 
the regular regime has been established, and by 
the system of straight parallel lines with the 
negative angle coefficient equal to --m, as shown 
in Fig. 1. This is a typical feature of the regular 

! 

Fro.  I. The  t empera tu re  field o f  the  sys tem at  its 
regular  cool ing or  heating.  

regime and is only essential for it. m plays an 
important role in the theory of  regular regime 
and it is known as the rate of cooling, since 
it characterizes the rapidity with which the body 
is cooled. 

The theoretical and experimental researches 
dealing with the cooling of bodies in various 
mediums indicate that the rate of cooling 
depends upon the heat transfer coefficient, the 
thermal characteristics of a body, and its size 
and configuration. 

The rate of regular cooling of a uniform and 
isotropic body at the final value of heat transfer 
coefficient is proportional to the surface of the 
body and inversely proportional to its total 
heat capacity (C). 

The coefficient of proportionality is a product 
of the heat transfer coefficient a and the criterion 

~b which is decreasing monotonously as ~ is 
increasing. 

S 
m = aft ~ (7) 

t s  - -  r c 
= - -  (8) 

t v - -  t c 

where the criterion ~ characterizes the non- 
uniformity of the temperature field in a body 
and is numerically equal to the ratio of the 
average surface temperature of a body to its 
average volumetric temperature of superheating. 

I f  a ( B i )  = O, t h e n  ~ - -  l 

and a(Bi) ~ ~ ~ ~ 0 

lim m = m to which corresponds to Bi = to and 
the thermal diffusivity of the material are directly 
proportional: 

a = K m ~  (9) 

where the coefficient of proportionality Kdepends 
only on the size and the form of a body. 

The coefficient Kserves as a measure of thermal 
inertia of  a given model: the greater the value 
of K the smaller is m and thus the slower the 
cooling of a body proceeds, irrespective of what 
material the body is made. 

K, in the theory of regular regime is called 
a coefficient of a body shape. This coefficient 
can be calculated in two ways: either at Bi ~ 
or considering the boundary conditions 

U / s  = 0 (10) 

and we shall define m ~. In many works on the 
regular r e , m e  theory [2--4] the value of the form 
coefficient has been calculated for bodies of 
various configurations. 

The application of equation (7) was in prac- 
tice restricted by the difficulty of calculating the 
criterion 6. The methods of calculation used for 
this criterion have been developed only for 
bodies which have a simple configuration. 
Later on Condratjev and his followers Duluev 
and Jaryshev proved that the equation (8) can 
be expressed in the more general form [5--7]: 

M = ~,H (11) 

where M = m / m  ~ = m K / a  is the criterion of 
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the body's thermal inertia; H = (a/A)(KS/V) is 
the generalized Blot criterion; V and S are the 
volume and the, body's external surface, res- 
pectively. 

For  bodies of  various configurations an 
approximate analytic expression for the criterion 

has been found: 

1 
= ~/(H2 + 1.437H + 1) (12) 

The equation (12) defines the value of  criterion 
for bodies of  various configurations with 

an exactness sufficient for practical calculations 
[7. 8]. 

I f  we picture the dependence between the rate 
of  cooling of  a body and the coefficient of  heat 
transfer (Fig. 2) then the curve will be o f  a non- 
general character which is valid for the concrete 

/ 
° / 

/ 

f 

mm 

0" 

FIG. 2. The asymptotic law of m-rate increase for the 
regular body cooling when the heat transfer coeffici- 

ent increases. 

case where the configuration and the size of  a 
body as well as the characteristics of  the material 
are given. The dependence between the criteria 
M and H plotted in Fig. 3 is of  a general type and 
it is valid with sufficient exactness for non- 
uniform isotropic bodies of  various configura- 
tions and sizes which are made of  solid or dry 
materials. 

(a) The thermo-insulating nucleus of  any 
arbitrary form with a metallic cover round it.t 

? The "th~'mo-imulating nucleus" is defined as a part 
of a body or a sy~-m with a non-uniform temparature 
distribution. The "thermo-irm~ting cover" is a part of a 
body or a system with a uniform temperature distribution 
for, the Oven experimental conditions. 

1.0 

0"8 

M O~ 

0.4  

0 4 8 12 16 

H 

FtG. 3. The approximated univenml dependence 
M = M(H) for regular cooling or heating of a body 

which has any configuration. 

The previous criteria are valid for these sys- 
tems and to calculate them we can use formulae 
( l l )  and (12): 

Km ~S~, [ ._ Coov' 1 
M =  ~ V ~m Soo~! (13) 

where C°ov and Seov are the total heat capacity 
and a cover external surface; m is the rate of  
cooling of  the whole system and the other 
symbols relate to the nucleus. 

(b) A metallic nucleus with a thin thermo- 
insulating cover round it. 

Suppose we neglect the heat capacity of the 
cover (Ceov) in comparison with the heat capacity 
C of  the nucleus then the regular thermal regime 
can be expressed by: 

m~- ~.+ ~ = 1 (14) 
i 

where m is the cooling rate of  the whole system; 
C and S are the heat capacity and a nucleus 
surface; A~ and 8~ are the thermal conductivity 
coefficient and the thickness of  t h e / t h  layer of  
the cover;** ~ is the heat transfer coefficient of  
the system. 

(c) The simplest two-component bodies are 
spherical and plane hi-calorimeters. 

,~ A cover may consist of several layers. 
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We shall define "bi-calorimeters of regular 
regime" as systems consisting of a metallic 
nucleus with a layer of close-fitting heat insulat- 
ing material, which has finite heat capacity. In the 
spherical bi-ealorimeter the nucleus (1) and the 
sphere cover (2) are arranged concentrically (see 
Fig. 4). In the plane bi-calorimeter the flat- 
parallel plate has a heat insulating material of 
thickness 8z round it (see Fig. 5). 

FIG.  4.  A s p h e r i c a l  bi-eaiorimeter. f-~/-~..~./~~ 
FIG. 5. A plane bi-calorimeter of a symmetric type. 

Let us introduce the following values: ~ = 
C1/S t is the nucleus constant; 1 = RI/Rz is the 
ratio of nucleus and cover radii; Pt = 8d;q is 
the thermal resistance of the heat insulating layer 
and some new criteria such as 

B = l$Ptm 

1 + l + l  a Ct 
N =  

3l Ceov 

B 
S 2 ~ - -  

N 

H _..~ I ra~p 

Then a regular regime for all kinds of spheres 
with a metallic nucleus will be described by 
equation [2]: 

1 - - I A - - N S  2 

1.0 

0-8 

0-6 

= s~ + ~ + t - A (15) 

where A = A ( S )  is a dimensionless parameter 
an expression of which is given in [2]. 

Note that  0 ~ N-..< oo,0 ~< l ~< 1,0 ~<B~< 1. 
When we have such a case as N >~ 2, which is 
more frequently used, it is quite possible to 
reduce equation (15) to a simpler approximate 
form 

1 - -  I H -  (1 + l + /2 ) /3  ( H / N )  
B ~ 1 + (1 -- F1)/N (16) 

The dependence B = f (N , l )  for all kinds of 
N and l has been plotted in Fig. 6. Analogous 

? ' 
C' I I i I i i i ! t t i 

3 

N 

FIG. 6. The dependence B = f(N,e) for the spherical 
bi-calorimeter at a --. oo. 

0"4 

0.2 ̧  

formulae have been derived for a plane bi- 
calorimeter [2]. Here we shall take only the 
formula for the c a s e .  = ~ .  The criteria B and 
N for the plane hi-calorimeter are of the type 

Ct 
B = ~P.m,  N = Cco----~ (17) 

The graphical relation between criteria B and 
N has been presented in Fig. 6 and the curve 
corresponds to a plate for which l = 1. 

In 1954 Condratjev and Duiaev gave a 
generalization of the thermal regular regime 
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theory tbr heating both of bodies and of systems 
under the action of the energy sources inside the 
body or at its boundary [11]. 

The theory is based on the following assump- 
tions: (a) the capacity of energy sources (or sinks) 
is constant in time; Co) the ambient temperature 
is also constant; (c) the heat transfer coefficient 
and material thermal properties are independent 
of the temperature. 

Analysing the exact solution of the problem1' 
of body heating under the action of the internal 
energy sources one may come to the following 
conclusion as to why in some time the process 
becomes regular, when the temperature at any 
point of the body is changing according to the 
simple exponential law, i.e. 

In (t® - -  t) = - - m r  -4- G*(x , y , z )  (18) 

where m is the rate of heating and G* is the co- 
ordinate function. 

The analysis of the heating of a body of any 
arbitrary configuration under the influence of an 
energy source will bring us to .the conclusion that 
the rate of heating has the following dependence 
on the heat transfer coefficient: 

S 
m = ~ *  ~ (19) 

( t® - t ) s  
where ~b* = ( t ~ -  t )v  (20) 

the indexes S and V mean the average of the 
corresponding values along the body surface 
and its volume. 

(a) The rate of heating either a body or a 
system is independent of the sources of power 
and their location in the system and is numerically 
equal to the rate of cooling (the sources of power 
are equal to zero). 

(b) The rate of heating is independent of 
the co-ordinates. 

(c) The shape coefficient K of a body which is 
heated by energy sources has the same physi- 
cal meaning as the shape coefficient K' of a body 
which is heated in the medium. K and K' are 
equal. 

t Later on we shall speak about  the body heating 
under the intluence of energy sources. All conclusions are 
valid for the case of a body ~-.ooling under the influence of  
energy sinks. 

(d) The criteria ~b* and ~b have a different 
physical meaning, but numerically they are 
equal. 

(e) The temperature tj at any point j of a body 
which is in a stage of regular regime, is 
subordinated to the following equation: 

1 dt j  1 
m(t~),o dr + (tj),o tj = 1 (21) 

where (tj).~ is the stationary temperature at the 
point j.  Tal~ing into account the first four results 
we can use the theory given above of a regular 
r e ,  me to calculate the numerical values of m 
and ¢*. 

Now we can show that a stationary tempera- 
ture (tj)~o of any point j of the system depends 
upon the sources of power in the following 
way [8]: 

n 

(tj)-----t~ = ~,o P~ F,j (22) 
i f f i i  

where P~ is a total output, at bregion of the 
bodies system; n is a number of the system 
regions; F,~, some coefficients which are inde- 
pendent of either temperature or the sources' out- 
put. To determine these eoelfieients it is necessary 
to solve an ordinary system of equations for 
the stationary temperature field. 

If we consider the heating of a body under 
the influence of many energy sources we can 
obtain an approximated solution of a problem 
supposing that the temperature field becomes 
regular from time r = 0. In this ease the tem- 
perature at any j-point will be determified by 
the approximated formula 

t~ ~ {1 -- exp (--mr)} ~ P~ F~j (23) 
I w l  

The peculiarity of the above discussed regular 
regime lies in the fact that after the regular regime 
has already started the peculiarities of the 
initial state do not influence the temperature field. 
The same phenomenon of the regularization of 
thermal regime takes place in other cases. For 
example, if the temperature of the external 
medium t, changes at a constant velocity w ~ 0 
then after a lapse of time the temperatures of 
all the points of the system will change with a 
constant velocity equal to w. Such a regular 
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regime was called a regular regime of the second 
kind and its regularities for bodies and systems 
of bodies have been studied in detail [12-14]. 

The regularization of the temperature field 
of a body for the oscillating change of the 
external temperature has not yet been thoroughly 
studied.t In this case we also observe the follow- 
ing regularity: the temperature at any point of 
the system is in the range of a mean value and has 
the same oscillating period for the ambient tem- 
perature [2, 10, 14]. 

An analysis of various cases of temperature 
field regularization made it possible to calculate 
the general thermal determination of a regular 
regime. Under the expression the "regular 
thermal regime" of a body or a system of bodies 
one may understand such a regime for the 
change of a system's temperature having the 
following properties: 

(a) In the course of time a system's initial state 
does not influence the regularity of temperature 
change. 

(b) The regularity of a temperature change 
with space-time has a simple mathematical 
expression. 

(c) This rule is general for all points of the 
system. 

The practical application of the regular regime 
theory: The regular r e ,  me theory is useful in 
solving various problems of practical value; in 
particular this theory is the basis of a technique 
for the determination of the thermal character- 
istics of materials. 

(a) The determination of the material's thermal 
characterLstic$ 
The high speed methods based on this theory 

are fit for tests with any substance. Here we 
give only some of these methods. 

The experimental part of the work according 
to any method of regular re#me lies in the deter- 
ruination of the cooling rate m either of a body 
or of a system. For this purpose we generally use 
a differential thermocouple, one junction of 
which is in the body and the other in the 
medium. Observing the temperature change in 
space with time when a body is cooled in a 

t The so called regular regime of the third kind. 

liquid or a gas it is not difficult to define the rate 
of cooling, m, graphically: 

In (t -- to) = f&). 

The thermocouple junction can be at any point 
of a body since according to the theory the 
rate is independent of co-ordinates. 

If the experiment is carried out in conditions 
of intensive heat transfer and a ~> 25~V/KS, it 
is possible to consider the heat transfer co- 
efficient, assumed equal to infinity; using 
formulae (24) and (9) we find the rate of cooling 
and the thermal diffusivity of the material. 

Cooling at very low values of the heat transfer 
coefficient and with a body of small size the 
temperature distribution in the body will be 
uniform. The criterion ~ is near unity and 
taking formula (8) we shall find the heat capacity 
of the material. The possible sizes of a sample 
will be evaluated as: 

KS 0.03A 
V a 

Thus the error in the determination of the 
thermal capacity caused by non-uniformity of 
the temperature field will not exceed 2 per cent 
[10, 16]. If we know the rate of a body's cooling 
at two different heat transfer coefficients, 
using formulae (11) and (12), we shall find the 
thermal characteristics of the material either (A 
and c) or (a and ~), and the samples may be of 
any configuration [15]. 

In the cases discussed above it is not necessary 
to put samples into the apparatus. The exception 
is made only for dry substances and fibrous 
materials, which are usually put into metallic 
jars with thin walls. In this case we calculate 
using the formula (13), which takes into account 
the cover effect upon the rate of cooling. 

Bi-calorimeters based on the regular regime 
theory are being practised on a large scale to 
measure the thermal properties of solids and 
liquids (see item 4). Three types of bi-calori- 
meters have been developed: plane, spherical and 
cylindrical. All three have a massive metallic 
nucleus in the centre with a thermocouple placed 
into it. The material under test is put between 
the metallic nucleus and the metallic cover of 
the apparatus (Fig. 7). 
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The preheated apparatus is intensively cooled 
in a liquid and the rate of cooling is determined 
accordbig to formula (24). 

Then the thermal conductivity of the material 
under test is determined by formulae (17) and 
(18) (see [9, 10, 16]). 

! 

FnG. 7. A spherical bi*caiorimeter. (1) A porcelain 
two-channel ~ube for a thermocouple. (2) An ebonite 
and textolite tube joined with the metallic nucleus 

(3). (4) A heat insulator under the test. 

The application of bi-calorimeters for testing 
heat protective properties of clothing and fabrics 
has to be studied separately. The apparatus used 
for this has a simple mounting: the bi-calorimeter 
enveloped in a fabric has air freely flowing 
through it (this can be quiet or flowing, rarefied, 
dry or humid, etc.). The methods for the deter- 
mination of heat protective properties of clothing 
and fabrics based on the regular regime theory, 
which is of a high speed by its nature, make it 
possible to collect information about the be- 
haviour of different fabrics, depending on 
meteorological data, in a short space of time [2]. 

(b) Determination of the heat transfer coefficient 
and total emissivity by the regular regime 
methods 
A new method for the determination of the 

heat transfer coefficient of various bodies, and 
total emissivity of any coverings has been 
developed using formulae (9) and (20). A model 

of high thermal conductivity material has been 
made to achieve tiffs aim. Observing its process 
of  cooling it is possible to determine the co- 
efficient of heat transfer depending on tempera- 
ture for a very short time. The total emissivity 
was measured analogically [10, 18, 19]. 

(c) Determination of  thermal inertia of  thermo- 
meters and pyrometers 
This problem is of great importance for 

meteorology, experimental physics and en- 
gineering measurements. Therefore from the 
very start of exact thermometrics attention was 
drawn to it and became a subject of numerous 
investigations which are not finished even now. 
The theory of a regular thermal regime made it 
possible to analyse the notion of a constant of 
heat inertia and gave a new method for its ex- 
perimental determination. It is rather easy to 
show that the value of • is a convenient measure 
of the thermal inertia characteristic of an 
arrangement; c = m -1, where m is the rate of 
cooling. Using equations (9), (10) and (20) we 
can find the dependence of the thermal inertia 
constant c upon the heat transfer coefficient and 
this dependence is called the characteristic curve 
of heat inertia. 

Recently Soviet scientists successfully com- 
pleted investigations on heat inertia of various 
engineering arrangements based on an applica- 
tion of the regular regime theory [2, 10, 19]. 

(d) Thermal calculations 
The theory of a regular thermal regime per- 

mits us to make approximate thermal calcula- 
tions for various complex arrangements. For 
example, using the formulae of Section 4[2] it 
is possible to calculate the heat insulation of 
different units (aggregates) operating in unsteady 
state conditions [2]. 

Formulae (9) and (10) serve to elucidate the 
influence of the shape and size of a body upon the 
rate of its cooling or heating which is of special 
importance for the theory of thermal treatment. 

The theory of regular regime, developed for 
bodies and systems with energy sources, has been 
used on a large scale for the last few years in 
the study of unstable processes in a complicated 
apparatus such as in a radio-electronic tech- 
nique, which is a complex of cables set in piles. 
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